Integrated Commissioning Status on 12.03.2021

While the JT-60SA was completing some final commissioning steps, last Tuesday, at about 9PM JST, during high voltage commissioning of one of the poloidal field coils there was an unexpected increase of current. The magnet is now being warmed from cryogenic temperature all the way to room temperature so that access in the cryostat can be gained, to verify the exact problem and then immediately set out remedial actions.

A root cause analysis will also be carried out to make sure such problem will not happen again and to transfer this experience to the ITER colleagues

02.03.2021 – JT-60SA successfully reaches its full design toroidal field

JT-60SA TF Magnet after its assembly
Animated toroidal field coils displacement during energization

Today the toroidal field magnet was successfully energized with a current of 25.7kA therefore reaching its full design magnetic field.

The toroidal field magnet comprises 18 D-shaped coils arranged in a ring, with the straight sections of their D-shapes pressed together as shown below. The JT-60SA plasma will be created inside the toroidal (i.e. shaped like a ring doughnut) vacuum vessel inside them (passing through the middle of each D). Each of the 18 coils is 7.5m high and 4.5m wide and together they weigh 370 tonnes. They produce a magnetic field running around the torus which has strength of 2.25T at the centre of its cross section. This field is fundamental to confining the superheated plasma of the tokamak.

During energization the coils move as illustrated in the animation (the actual movement is magnified 100 times), with their curved outer legs sliding within their support structures.

The successful generation of the toroidal field demonstrates the simultaneous operation of numerous tokamak systems, in particular the cryoplant, cryodistribution, cryostat and thermal shields maintaining the magnet at 4.2K, the power supply energizing it, the instrumentation ensuring its safe operation and the central control system supervising them.

The New JT-60SA Website Is Now Live!

This image has an empty alt attribute; its file name is New-website-1.jpg

We are pleased to announce the launch of our brand new JT-60SA website!

The new website replaces the former JT-60SA one with updated contents and style. It aims to provide the visitors with information on JT-60SA and its recent updates, while introducing the project to a wider general public, including students, the press, and researchers.

The new website will be regularly updated with interesting audiovisual information and research highlights of the JT-60SA project in Naka, Japan.

Integrated Commissioning Status on 13.01.2021

First coil energization

Today the first of the superconducting tokamak coils was supplied with power. Equilibrium field (EF) coil 2, located towards the top of the tokamak, was supplied with up to 1 kA by about 21:00 JST. The EF 2 magnet is almost 10m in diameter and weighs over 30 tonnes. This is a major project milestone, following the recent completion not only of the cooling down of the magnet system to 4.5 K but also the completion of the combination testing of the power supplies. Today after confirming the temperatures, pressures and flow rates of the cryogenic distribution system and testing the effects of the quench protection systems with synthetic signals, it was finally possible to send current to the coils whose field will soon confine JT-60SA plasmas. A quench occurs when a superconductor loses its ability to carry current without resistance. In these circumstances the magnets must be discharged rapidly to avoid damage. In the next days the current supplied to EF2 will be gradually increased as the quench detection circuits and the power supply controllers are tuned. The stainless steel vacuum vessel has a double wall and is heated by passing hot nitrogen gas between the inner and outer shells. The gas is heated electrically in the torus hall basement and is circulated in a closed loop. The baking of the vacuum vessel causes a substantial increase in the heat radiated to the thermal shield around the cryogenic magnets and a corresponding increase in liquid nitrogen consumption by the cryoplant keeping it cold.

Integrated Commissioning Status on 02.12.2020

Vacuum Vessel Baking

Having cooled down the magnets in the cryostat, now the vacuum vessel is being heated up to 200°C. The purpose of this ´baking´ process is to drive out moisture and other impurities from the surfaces inside the vacuum vessel sufficiently to provide the ultra high vacuum needed for high quality plasma experiments. The presence of too great a quantity of impurities can prevent the reliable formation of a plasma. It can also cause too much energy to be lost from the plasma or cause it to disrupt, ending out of control. In particular the graphite armour covering about 50% of the straight section of the inner wall and the open divertor running around the top of the toroidal vacuum chamber can absorb water which needs to be baked out.

The stainless steel vacuum vessel has a double wall and is heated by passing hot nitrogen gas between the inner and outer shells. The gas is heated electrically in the torus hall basement and is circulated in a closed loop. The baking of the vacuum vessel causes a substantial increase in the heat radiated to the thermal shield around the cryogenic magnets and a corresponding increase in liquid nitrogen consumption by the cryoplant keeping it cold.

Integrated Commissioning Status on 26.11.2020

JT-60SA Magnets now superconducting!

In the last 24 hours the magnets reached a low enough temperature to become superconducting. First the resistance of the niobium-tin windings of the central solenoid could be seen to drop to zero and then, about 12 hours later, the toroidal field and equilibrium field coils made from niobium-titanium followed.

The electrical resistance of the magnet windings is monitored primarily as an additional means to measure the average temperature of the winding, since their resistance depends on their temperature. However, below a certain cryogenic temperature the resistance of the materials drops to zero and they can carry current without consuming any power. This happens at about 18K for Nb3Sn and at about 10 K for NbTi. It is no longer possible to derive their temperature from that measurement – but it confirms their most important property!
Exploiting this phenomenon is a key feature of the JT-60SA tokamak that will enable it to generate strong magnetic fields during long experiments.

You can see the current magnet temperature here.